近年来,随着数实融合高速发展,人工智能技术在各行各业中得以普及和广泛应用。数据显示,2021年中国人工智能产业规模已达2008亿元,并将持续增长,预计2025年将达到4000亿元,人工智能时代的帷幕也已拉开。
而物联网作为当下人工智能落地最密集的领域,被预测是互联网发展的下一个浪潮。物联网一定是高度智能化的网络,“智能”将是物联网时代最核心的生产力。AI技术将渗透到云、边、端和应用的各个层面,与IoT设备进行深度融合。目前,AIoT已经成为一个大共识、大赛道、大市场。
在物联网时代,用户对于智能的需求呈现爆发式增长,但其碎片化程度也是前所未有。物联网的产业链较长、场景分散、需求复杂,如何推动产业链上下游的精细化分工和协作,面临巨大的挑战。
2022年世界人工智能大会京东云“AI无界 产业原生 产业人工智能论坛”上,云知声联合创始人/创新事业部总裁陈吉胜先生,向与会嘉宾深度分享了当下AIoT行业的数字化改造之困与云知声的解决路径。
云知声联合创始人、创新事业部总裁陈吉胜
以下为陈吉胜分享精华,我们做了整理,谨供学习。
从市场产值上看,根据机构IDC的数据预测,2019年全球AIoT市场规模就已达到2264亿美元,预计到今年将达到4820亿美元,2019-2022年复合增长率有望达到为28.65%。
从产业发展上看, AIoT在家居、汽车、智慧城市等行业和领域的需求正在逐步放大,应用场景进一步拓展,产业发展前景可期。
但同时,因着物联网的快速发展,也存在着2大困境。一是由于应用场景非常多,有家居,有车载,有办公,等各种各样的场景,同时形态也多样化,身边的智能设备越来越多了;有的公司,以前做音响,现在也做电视、冰箱、空调这样家电之类的等等。这样确实是扩大了AIoT的整体的爆发,但其碎片化程度也越来越严重。即无数需求碎片化组成的巨大市场总量。
另一个困境则是是,物联网的要想实现弯道超车,确实亟需与人工智能结合,但又不仅限于与人工智能结合。
人工智能在赋能实体行业的时候,只是一个单点的技术。但客户想要的,往往是一个以人工智能技术为核心的整体解决方案。任何一个行业都有自己的Know-how。单点的技术是通用型的,你的人脸、语音用在车行业还是钢铁行业是不一样的。所以对于一家人工智能企业来说,如何把自己的物联的平台、把自己AI的能力和行业的Know-how相结合,也是一个大的挑战。
而感知主要解决的是听见或者看见了的问题。那光听见或者看见也不行,还得听懂或者看懂,并做出相应的反馈。这就是认知。云知声的经验是,把认知的事情交给云端,也就是我们刚才所谈到的,大家说觉得比较傻的,需要非常强算力才能解决的问题,这一块放在云端解决。
综合起来就是,在千变万化的各种形态都有可能的终端上,用一个更加通用、标准的芯片嵌进去,解决前端的感知和表达。同时把这一些在应用场景下面需要的一些Know-how的把它放到云端,并让客户或者是消费者,自行的参与云端调度度,缓解碎片化的情况,并扩大AIoT场景落地。
目前,云知声自从在2018年5月正式发布了第一款自主研发的面向物联网的语音AI芯片“雨燕”以及软硬一体解决方案,其后基于多种专用芯片陆续发布了三代共7款语音芯片解决方案。
同时,关于云知声的芯片,目前主要应用于两个方向。一个是消费类,即蜂鸟系列,系列主要差异在功耗方面。蜂鸟主要作用于什么呢?其实我们很开心,我们其实都不知道它用于哪里。因为我们都是通过代理商发出去。
但是我们可以通过后来知道它用在哪里。比如带有语音功能的自动麻将机。用唤醒词洗牌既可以控制操作。它应用于碎片化的市场,用一颗比较标准的芯片,通过AI芯片在智能硬件上的集成,使得智能硬件立即转换成面向物联网的智能硬件。即可以扩大AIoT的场景落地,也有效缓解了需求碎片化的问题。
截至2021年,我们在消费类方面的芯片实现千万级出货。
另一个方向是车载。我们2020年推出了业界首款车规级语音专用芯片“雪豹”,今年也已经在客户量产车型落地出货。
同时,我们芯片的所有交互代码都是开源的,这也就意味着我们的代理商、方案商拿到我们芯片之后,只需要按照我们的手册,再结合他自己的行业know-how,做简单的调用以及产品的外观设计,就可以去推广了。比如红外摇控器、空调控制器,有冰箱的控制,洗牌板等。
广度上:云知声选择全场景智慧家居,来做行业的数字化拓展。每一个行业都有自己know-how,所以一定要选好行业,这样才能最大化的利用AI的力量,保证增量。
云知声选择行业的标准很简单;第一个行业的体量要足够大;如果行业的体量足够大,即使只解决了1%对于整个行业整个经济来说也是非常有价值的。比如说刚才咱们京东的供应链,这个行业足够大,如果有效率上一点点的提升,那整个国家所带来的运营的成本的下降,这个是非常显著的。
另外一个具体的场景要选好。为什么这么说呢。目前关于AI,有两种偏于极端的观点,一种认为AI好像无所不能,另外一种觉得AI用起来好像没有什么用。这两个问题核心的点是什么呢?其实反映的是具体的场景使用。举一个目前比较流行的智慧养老产品,即电话回访。目的只是为了确认老人的一些可量化常规健康状况,即血压、血糖、有没有头晕等等。如果是人工客服,老人在回答这些问题的时候,可能会夹杂着一些抱怨与投诉,甚至情绪比较激动的谩骂,不仅会影响回访速度,也会影响客服的心情,进而影响电话回访的效果。如果是机器的话,如果老年人不是思维特别跳跃,一般会回答一下,也不用担心由于心情激动。谩骂等影响回访效果。这个是一个很小的例子,这就是我们所说的场景的选择。
还有一个极端的例子,就是对于这些假释人员直接打电话,问:你现在人在哪。这个可能比养老的场景更合适,因为你知道是机器你也得回答,除非你想越狱,所以这就是我说的,行业的选择的适配性。
云知声目前选择在全场景智慧家居领域做深耕。
城市是人类发展文明的产物,社区是城市的重要组成部分,家居是社区的最基本组成单元。云知声基于云芯一体化,以打造私域空间智能+1公里智慧社区为目标,精准匹配用户生活中的痛点,连接社区服务、物业服务、构筑以服务为中心的AIoT全服务平台,打通智慧社区的最后1公里,提高人们的家居智慧体验。
同时,云知声采用以人为本的策略,打造1+N全屋智能解决方案。即在房子预装的时候,就预装好相应的智能设备与智能中控,届时只需要一个唤醒词就可以控制全屋的智能设备,1+ N,不需要全屋设备配网、测试等。
目前,云知声已经在广州天鹅湖、广州天越、珠海人工岛、长沙福晟翡翠湾、泸州世茂璀璨、福建霞浦等多个项目落地全场景智慧家居方案,反馈极佳。